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SUMMARY 

This is an expository paper that discusses the notions of widths 

and heights of (ü,   1)—matrices (previously introduced by the authors), 

in the general setting of known results concerning traces and term ranks. 

Proofs are omitted throughout. 
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TRACES,  TERM RANKS, WIDTHS AND HEIGHTS1 

D. R.  Fulkerson and H. J.  Ryser 

1.   The (0,   l>-ma:rix.    Let A be a matrix of m rows and n 

columns and let the entries of A be the integers 0 and 1.   Such a matrix 

is called a (0,   l)-matnx of size m b^ n.    For a specified size m by n there 

are 2       such matrices.    This finite subset of the set o^ all m by n 

matrices with real elements is of fundamental importance in combinatorial 

investigations.   One of the main reasons for this is the following.    Let 

X,> X0,  ..., X    be m subsets of a set X of n elements x,, xnf  .... x . 1'     2'        '     m r    2' '    n 

Let a.,   =  1 if x. is a member of X. and let a..   = 0 if x   is not a member 
iJ J i ij 1 

of X..   In this way we may define a (0,   l>-matrix A   ■   [a]   of size m 

by n.   This matrix is called the incidence matrix for the subsets 

X..  Xn.  .... X    of X.    The I's in row i of A designate the elements that r     2'        '     m 0 

occur in set X. and the i's in column j of A designate the sets that con- 

tain element x..   Thus A characterizes these m subsets of X.   A (0,   1>- 
J 

matrix of size m by n may also be regarded as a punched card having m 

rows and n columns.    The I's in the matrix correspond to punches and 

the 0's to blanks or vice versa.    From this very concrete viewpoint it 

is evident that the (0,   1)—matrix is a convenient device for the systematic 

storage of information. 

The work of the second author was supported in part by the 
Office of Ordnance Research. 
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With each (0,   IHmatrix A one may associate in various ways 

Integers that give insight into the combinatorial structure of A.    Examples 

of such integers are the trace and the term rank of A.   The authors have 

recently introduced the width and the height of A [ 6] .   The purpose of the 

present paper is to describe these two new concepts in the general 

setting of the previously studied theor/ for traces and term ranks.   We 

omit proofs but supply references to the literature. 

2.   Traces and term ranks.   Let A be a (0,  l)-matrix of size m 

by n.   The trace a of A is defined by 

t 
(2. 1) a   *   L   a.., t  ■ min(m, n). 

i«l 

This quantity is certainly elementary and causes no computational 

difficulties.   If A is the incidence matrix for the subsets X,. Xn.  .... X 12' '     m 

of X, then the trace a counts the number of times that x  is a member of 

Xi (i  ■ I, 2,  ..., t). 

The term rank p of A is the maximal trace obtained from A under 

arbitrary permutations of the rows and of the colum.is of A [ 15] .   In 

other words the term rank of A is the maximal number of I's that may 

be chosen in A with no two in the same row or column.    It is evident 

from the Definition that the term rank of A is invariant under arbitrary 

permutations of the rows and of the columns of A.   Combinato -ially this 

means that for incidence matrices the term rrik is independent of the 

• 
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particular labelling of elements x , x ,  ,.., x   and subsets X., X ,  ..., 

X     of X.   Indeed, the term rank is the maximal integer p for which there 
m 

exists a labelling of elements x , x ,  . . ., x   and subsets X  ,  X ,  .. .f X 

such that x! is a member of X.' for i  ■ I,  2t  . .., p.   No discussion of 

term rank would be complete without mentioning the classical theorem in 

the subject [ 11] •    It asserts that the term rank p equals the minimal 

number of rows and columns that contain all I's of A.   Thus if 

0    0    11 

0 10    0 
I 

1 0    0    0 | 

Li    0    0    0 ' 

» 

then both quantities are equal to 3.   The problem of evaluating the term 

rank p of a (0,   1)—matrix A can be viewed either as a maximal network 

flow problem or an optimal assignment problem.   Consequently efficient 

computational methods are available for determining term rank [ 1,  2,   12] . 

The special case that occurs when p s m deserves mention.    Then the sub- 

sets X , X ,  .. ., X     are said to possess a system of distinct representa- 

tives.   This topic has an extensive literature.   See, for example, 

[ 3,  9,   10,   13,   14] . 

3.   Widths and heights.   Let A be a (0,   l)-matrix of size m by 

n.    Let the sum of row i of A be denoted by r. and let the sum of column 

1 of A be denoted by s..   We call R  « (r,, r ,  .. ., r   ) the row sum 

vector and S  a (s.,  s2,  . . .,  s ) the column sum vector of A. 
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(3.1) ^  >  r2 >   '••   >rm
>0 

(3.2) 8.    >    8.    >    . . .     >    8       >     0. 
1  —    2  — —    n 

Then we call A normalized.   Henceforth we take A normalized.    This 

restriction is frequently a convenience rather than a necessity. 

Let o be an integer in the interval 

(3.3) 1   <  a  <  r 
-       -    m 

and let < be an integer in the interval 

(3.4) 1 <  c   <  n. 

Suppose that the normalized A has an m by < submatrix E   each of whose 

row sums is at least a.   Then the c columns of E* are said to form an 

o-set of representatives for the matrix A.   Let c (o) be the minimal 

number of columns of A that form an a-set of representatives for A. 

Such a column set is called a minimal o-set of representatives for A 

and «(a) is called the o-width of A.   The integer a and the matrix A 

uniquely determine < (0).   We note that the o-width < (a) of A is invariant 

under arbitrary permutations of the rows and of the columns of A. 

However, the a-width of the transpose of A may differ drastically from 

that of A.   This is not the case for the trace and term rank of A, both 
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of which remain unchanged under transposition. 

Let E* be a submatrix of A of size m by < (a) that yields a minimal 

o-set of representatives for A.   Let E be the submatrix of E   composed of 

all of the rows of E* that contain a I's and c (a) - o O's.    The matrix E 

is called a critical o-submatrix of A.   E   cannot be empty since if all 

row sums of E* exceed a, then deletion of a column of E* yields an a-set 

of representatives for A, contradicting the minimality of «(a).    It 

follows without difficulty that the normalized matrix A has an o-width 

< (o) for each a in the interval 1  <  o  <  r    .   A critical a-submatrix E 

of A associated with an o-width < (a) contains no zero columns. 

Each of the critical a-submatrices E of A must contain c (a) 

columns.   But the number of rows in the various critical a-submatrices 

need not be fixed.    Let E be a critical a-submatrix containing the minimal 

number of rows 6(a).   The positive integer 6(a) is called the a -height of 

A.   Both c(a) and 6(a) are basic invariants of A.   Evidently 

(3.5) «(1)  <   «(2) <   ...   <   c(r   ) m 

and 

(3.6) 6(1)  >  c(l). 

Thus if 
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L: 
0    0     11 

0    0     11 

then<(l) - 2, «(2) > 4, 6(1)  - 4, 6(2) - 4. 

The preceding discussion has an important set theoretic 

interpretation.   Let A be the incidence matrix for the subsets X , X , 

..., X     of X.   No loss is entailed by regarding A as normalized.   A 

minimal a-set of representatives for A yields a subset X   of < (o) elements 

of X.    X* has the property that each X. D X* contains at least a elements 

(i  ■  1,  2,  ... t m).   No subset of X containing fewer than < (o) elements 

possesses this property.   At least   6 (a) of the sets X. D X   contain 

exactly a elements.   If a »  1 then X* has the property that each X /I X* 

is nonempty and no subset of X containing fewer than c(l) elements 

possesses this property. 

For a concrete example, consider the problem of determining 

the fewest number of nodes or Junction points in a network that touch all 

links of the network.   Here we may regard X as the set of all nodes, a 

link as a subset of two nodes (its ends) of X.   Then the problem is to 

find the fewest number of nodes that "1-represent" all the links, that is, 

the 1-width of the incidence matrix A of links vs. nodes.   The famous 

"eight queens" chess problem is of this type.   Here one forms a network 

by connecting two cells of the chess board if a queen can move from one 



P-i922 

7 

to the other.   Then the complement of a minimal system of cells that 

touch all links are positions in which the maximal number of queens can 

be placed so that no two attack each other. 

Very little is known concerning good computational methods for 

determining widths and heights of (0,   IHmatrices.    Efficient algorithms 

in this domain would be of great interest. 

4.    The class (^(R, S).    Let A be a normalized (0,   IHnatrix of 

size m by n with row sum vector R ■ (rtl rMf    . .. s ).   The vectors R r    « n 

and S determine a class 

(4. 1) flf ■   :^(R, S) 

consisting of all (0,   IHmatrices of size m by n, with row sum vector R 

and column sum vector S.   Simple necessary and sufficient conditions on 

R and S i re available in order that the class   ^ be nonempty [ 1,  16] . 

We always take 0f nonempty and refer to (3f as the normalized class 

^(R, S). 

Let A be in the normalized class c^and consider the 2 by 2 

submatrices of A of the types 

r 
A ■T   0 and 

0 1 
A,- 1 0 

An interchange is a transformation of the elements of A that changes a 

minor of type A   into A , or vice versa, and leaves all other elements 
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of A unaltered.   An interchange is in a sense the most elementary 

operation that may be applied to A to yield a new matrix within the class 

0{(Rt S).   The interchange theorem [ 16]  asserts that if A and A1 belong 

to A, then A is transformable into A1 by interchanges.   This theorem is 

a very useful one for the study of the class (X(R, S). 

Let A be in the normalized class CK(R, S) and write 

(4.2) 
W    X 

Y     Z 

where W 1» of size c by f (0   <  e  <  m;   0  <  f  <  n).   For an arbitrary 

(0,   IHnatrlx Q, let N  (Q) denote the number of O's in Q and N^Q) the 

number of l's in Q.    Let 

(4.3) tef - N0(W)   +  N^Z) (e  «0,   1,  . . ., m;   f  s 0,   1,  . .., n) 

and define 

(4.4) T -  [t f] (e  « 0,   1,  . . ., m;   f  » 0,   1,   . . ., n). 

T is called the structure matrix of the class 0([ 18] .   It follows at once 

from (4.3) that 

(4.5) t . ■ ef  •»•  (r Al   ♦ r  .,♦...••• r   ) ef e+1 e+2 m 

-(81   +  s     +...  +  s)     (e  ■ 0,   1,     .., m;   f  » 0,   1,   . . ., n). 

Thus the structure matrix is independent of the particular choice of 

A in^r. 
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The structure matrix contains a wealth of information concerning 

the class 0f(R, S), as will be evident in succeeding sections.    Here we 

mention only the following fact.    Ifr,>r0>...    >r   , ' • 1-2- -m 

s,   >  s0  >   ...   >  s , with Er.   «Es.»   and if t     is defined by (4.5), 
1-2— —    n' i1]^ 

then a necessary and sufficient condition that 3f be nonempty is that 

t f >   0 for all e, f.   This can either be seen directly from the max flow 

min cut theorem for network flows [ 2, 3]   or can be deduced from the 

conditions stated in ( 7,  16] .   Since we are dealing throughout with a 

nonempty class and have defined T by (4.3) rather than (4. 5),  its entries 

are of course nonnegative integers.    It may also be seen that T satisfies 

the equation 

(4.6) 

n 

—r 

m 

—r 
ID 

n 

Here E   is the triangular matrix of order k + 1 with I's on and below the 

T main diagonal, E     is its transpose, J is the m by n matrix with all 

entries 1, and r is the total number of I's in a matrix A of the normalized 

Orm, s) [ is]. 

5.    The fundamental formulas.   We now discuss traces, term 

ranks, widths and heights for the matrices in the normalized class 

#(R, S).   We begin with the trace.    Each matrix A in     (R, S) has a 
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trace a.    Let 6 be the minimal and let Q be the maximal trace for the 

matrices in the normalized class 3r(R, S).    It is natural to attempt to 

determine the integers a and a explicitly.    Unusually simple formulas 

are available in terms of the elements of the structure matrix T, namely 

(5. 1) or   ■ max     {min (e, f) - t f} 
fei 

(5.2) a   ■ min     {t .   ♦   max (e, f)} 
e. f        ef 

(e   • 0,   1,  . .., m;   f  « 0,   1,   . .., n). 

Formulas (5. 1) and (3. 2) are derived in [ 18] . 

Each matrix A in the normalized class    Uli, S) has a term rank 

p.    Let p be the minimal and let p be the maximal term rank for the 

matrices in   ^(R, S).    A remarkable for nula is available for p [ 17] 

(5.3) p- min   {t      +   (e ♦ f)} 
e,f       ef 

(e   «0,   1,   .. ., m;   f  »0,   1,  . . ., n) 

The derivation of (5. 3) is not simple.    However,  p appears to be an even 

more elusive and difficult quantity to handle.    Haber has investigated p 

carefully and devised an effective algorithm for the evaluation of p [ 8] . 

We next discuss the recent investigations by the authors involving 

widths and heights [ G] .    Let 1 <   &   <  r        Then each A in the normalized 1 -        -    m 

class (^(R, S) determines an o-width «(a) and an o-height 6(o). 
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For each a let the minimum of these « (OVB over all A in Ä(R, S) be 

denoted by 

(5.4) T  • i{Q). 

We call t   ■ r(a) the minimal a-width of the class   ''(K, S).    Let 

(5.5) 6   ■   6(a) 

equal the minimum of the o-heights 6(a) over all matrices A. of a-width 

«(a) in ^(R, S). 

Now let 

(5. 6)     N(€ t e, f) ■ tef + (Sj + s2 + . .. + s^) -ec, 

where c, e, f are integer parameters rach that 

(5.7) 0  <   «   <  n» 

(5.8) 0  5   e  5   m» 

(59)                                €   <   f <  n- 

One may deduce the following [ 6] . 

Theorem 5. 1.   The minimal a-width c (a) equals the first 

nonnegative integer t such that 

(5. 10) N(«, e, f)  >  a(m -e) 
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for all integer parametere e and f restricted by 0  <  e  < m and 

«   < f  <   n.   Let 

(5. 11) f -min (N(€ - 1, e,f) ••• ae] , 

where 0   <  e  <  m and c - 1  <  f  < n.   Then 

(5. 12) 6(a)  « (o +  1) m- r-s^. 

For each a let the maximum of the o-widths < (a) over all 

matrices A in OliR, S) be denoted by 

(5. 13) «   • 1(a). 

We call <   ■ c (a) the maximal o-width of the class (3f(R, S)    Almost 

nothing is known about c (a) but it seems certain that its behavior is 

decidedly more intricate than that of c (a). 

A direct application of the interchange theorem allows us to prove 

that if « is an integer in the interval 

(5. 14) 1(a)  <  e   < i(a), 

then there exists a matrix A   in ^(R, S) of a-width t ( 6] .    The 

analogous result for term ranks is also valid [17] .    Traces for matrices 

in the normalized class ^(R, S) usually take on all integer values in the 

interval a   <   a <   a but certain classes exclude a   -^ 1 and others 
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exclude ä - 1 [ 18] . 

6.    Concluding remarks.    In this section we give a brief discussion 

concerning the proofs of the combinatorial formulas described in Section 

5.    Formulas (5. 1), (3. 2), (5. 3), and Theorem 5. 1 have all be^n derived 

by first constructing a kind of canonical matrix in the class    "(it, S).    By 

this vie merely mean that the existence of a matrix A is established with 

certain very special properties     These properties are such that they 

make the combinatorial formula mc re or less apparent     The canonical 

matrix is constructed by whatever techniques are available.    Here the 

efficient use of interchanges is frequently a very powerful tool.   We 

illustrate by stating the following theorem [ 6] . 

Theorem 6.1.    Let T   • t (o) be the minimal o -width of the 

normalized class 0({Rf S) and let 6   « 6(0) be the minimum of the o -heights 

6 (o) over all matrices A, of o -width 1 m öfill, S).    Then there exists 

a matrix A   of o -width T in Ö({Rt S) of the form 

(6. 1) A? 

M   I   J 
T"1— 

Here E is a critical submatrix of A„ of size 6 by T. M is a matrix of 

size e by T with o + 1 or more I's in each row. F is_a matrix of size 

m — (e +  6) by T with exactly o  +  1 I's in each row.    J is a matrix of 
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■ize e b^ f — i" consisting entirely of I's, and 0 is a zero matrix.    Each 

of the first « columns of A^. contains more than m — 6 I's.    The degenerate 

cases e   ■ 0,  e *♦■ 6   ■ m, f ■ t, and f  « n are not excluded. 

Theorem 6. 1 makes the derivation of Theorem 5. 1 a relatively 

easy task, once one has succeeded in   "guessing" the appropriate formula 

(5. 10).   Of course the existence of canonical matrices of the form (6. 1) 

is of interest in its own right and gives us considerable insight into the 

structure of the class ^V(R, S). 

Recently certain combinatorial results have been derived by the 

use of network flows [2,  3,  4,  5,  7,   10] .    This approach has been on the 

whole very successful.    Network flows are effective in dealing with 

problems involving the trace [ 5] .   Theorem 5. 1 may also be derived by 

flow theory.    But the use of flows appears to be ineffective in dealing 

with maximal and minimal term rank,  or maximal width.    For example, 

no flow derivation has been obtained for the p formula (5.3) although 

several attempts have been made in this direction.   Perhaps fie most 

attractive feature about using flows to derive combinatorial results is 

that, if one is successful in obtaining a flow formulation of the problem, 

usually little subsequent guesswork is involved.    For instance, a flow 

formulation of the minimal width problem leads one rather directly to 

the conclusion that (5. 10) is the appropriate formula for r(o).   At the 

present, however, there appears to be no truly systematic way of dealing 

with combinatorial problems of the kind we have discussed. 
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